6.10.2015 ISP-style Email Server with Debian "Woody" and Postfix 1.x | workaround.org

g

literacy and subtleties for open-source bigots and other weirdos

ISP-style Email Server with Debian "Woody" and Postfix 1.x
Submitted by Christoph Haas on Sun, 12/27/2009 - 00:32

Note: Debian Etch is not the stable version of Debian any more. Consider reading the newest tutorial
(http://workaround.org/ispmail) .

Copyright © 2002,2003,2004 Dipl.-Inform. Christoph Haas <email@christoph-haas.de>
Abstract

You have probably already seen web hosters who allow you to rent domains and receive email on these domains. Have
you ever wondered how they actually handle these thousands of domains? There is surely nobody entering all these
domains and aliases into a 'main.cf configuration file manually. Postfix offers two nice features that simplify such tasks:

¢ Virtual domains

In addition to your local domain (which is probably the domain that is configured in /etc/defaultdomain) you may
receive email for other domains that are called virtual domains. There is no limitation on the number of domains you
can receive email for.

e Database lookups

You do not need to store all the information about your users and valid email addresses in text files. Postfix
supports database lookups to common DBMSs like MySQL or PostgreSQL. This approach is especially charming as
you may write a web administration GUI to manage the database. You may even allow your users to take care of
their email accounts themselves.

This tutorial will introduce you to the basics of this kind of configuration. If you carefully follow all the steps in this
document you will end up with a mail server that can handle thousands of domains and user accounts. These are some
features you will get:

* POP3/IMAP access for your users

e Webmail access

e Virus scanning

e Spam prevention

e Secure mail relay access for road-warriors
e Easy domain administration

Although | will try to get you going quickly you will need to know a few things already:

e MySQL (creating a database, granting access for users and how SQL queries l00k)

e SMTP, POP3, IMAP (I assume you have a basic knowledge of these protocols)

e Basic Postfix configuration (you should be familiar with the 'main.cf' configuration file)

e Debian/Linux (you should know basic system administration tasks like installing software or editing text files)

https://workaround.org/ispmail/woody

1/14

https://workaround.org/
https://workaround.org/
https://workaround.org/ispmail/woody
https://workaround.org/user/1
http://workaround.org/ispmail
https://workaround.org/
https://workaround.org/user
https://workaround.org/user/logout
https://workaround.org/admin/dashboard
https://workaround.org/admin/content
https://workaround.org/admin/structure
https://workaround.org/admin/appearance
https://workaround.org/admin/people
https://workaround.org/admin/modules
https://workaround.org/admin/config
https://workaround.org/admin/reports
https://workaround.org/toolbar/toggle?destination=node/167
https://workaround.org/node/add
https://workaround.org/admin/content
https://workaround.org/admin/content/book
https://workaround.org/admin/config/user-interface/shortcut/shortcut-set-1

6.10.2015 ISP-style Email Server with Debian "Woody" and Postfix 1.x | workaround.org

le.[Importa
nt) This tutorial fits for Debian-Woody (3.x). If you are running newer Debian versions read the Postfix 2.x
tutorial instead.

Table of Contents

What's new

The components

What are mappings?

How virtual domains work

Step 1: Install the needed Debian packages
Step 2: Create the database

Step 3: Create the tables

Step 4: Create the database mapping definitions
Step 5: Create a vmail user

Step 6: Edit the main.cf

Step 7: Make Postfix understand authenticated SMTP (Auth-SMTP)
Step 8: Configure the POP3 / IMAP service
Step 9: Test your setup

Step 10: Populate your database

Scanning incoming email for viruses (optional)
Offering webmail access (optional)
Troubleshooting

Thanks

What's new

As some of you may have noticed there have been some problems in the first version of this tutorial that may have led to
error messages like "user not found" although all information was entered properly into the database. | read a lot of
documentation and spent weeks on IRC until | completely understood the quirks of virtual domains in Postfix 1.x. That
does not mean that you should not use Postfix 1.x (as shipped with Woody). Just some things behave differently. |
decided to completely rewrite my first tutorial. | have added a few paragraphs that describe virtual domains, the general
function of mappings and how MySQL can be used in Postfix. As a downside for those who have already set up their
server following my old tutorial | changed the database structure fundamentally. Thus my good old Perl script
(ispmailadmin) does not work with this database structure any more. I'm planning to rewrite the Postfix 2.x tutorial (for
Sarge) too to adopt the structure. After that I'll probably help the phpmywebhosting _(http:/phpmywebhosting.sf.net/) project to
make it use this structure. Thanks for your patience and the many feedback emails | received. Have fun with the new
version.

The components

The whole setup depends on different software components that play together nicely. Let me clarify what each of them
does:

e Postfix: Your MTA (Mail Transfer Agent) that receives emails via the SMTP (simple mail transfer protocol) and
delivers them to different places on your hard disk.

e MySQL: The database server that stores the information to control the behaviour of postfix. It knows about users,
domains, email forwardings and passwords.

e Courier: Courier is a standalone mail server just like Postfix. | will however just use itsPOP3/IMAP server component
to let users access the mailboxes.

e PAM: The PAM (Pluggable Authentication Module) mechanism offers a way to authenticate users. It is used to verify
the usernames and passwords of your users with the information in the databse.

e SASL (the Cyrus library): If your users are dialed in at another ISP (Internet Service Provider) while they are on the
road they get an IP address outside of your network. Your mail server however only trusts local IP addresses. The
SASL (Simple Authentication and Security Layer) adds authentication to SMTP and makes your mail server trust
them.

* AMaViS: A mail virus scanner that works as a content filter in Postfix. It scans incoming mail for spam pattern (using
the well-known spamassassin) or viruses.

e phpmyadmin: A web interface to manage your local MySQL databases. It's fare more comfortable than using the
'mysqgl' command from the command-line.

The big picture looks something like this:

L

What are mappings?

https://workaround.org/ispmail/woody 2/14

https://workaround.org/ispmail/sarge
http://phpmywebhosting.sf.net/

6.10.2015 ISP-style Email Server with Debian "Woody" and Postfix 1.x | workaround.org

In short a mapping assigns one value to another. You probably know the file /etc/aliases where you define forwardings for
your local domain. A line there looks like this:

postmaster: root

This makes all mail to postmaster@your-domain be redirected to root@your-domain. The left side (here: "postmaster") is
commonly called LHS (left-hand side) and the right side (here: "root") is called RHS (right-hand side) accordingly. You will
find that these are common abbreviations when talking about mappings.

Hint: Usually map files do not have colons (') on the left side. This is special to the aliases table for historical and
compatibility reasons. Also the local aliases file special in that it is not compiled with postmap but the newaliases
command. This is just a (bad) example. :)

If you are setting up Postfix the quick and dirty way you will typically start with text files like the one above. You just write
the mappings into it and run postmap filename on it to convert the text file into a hash file called "filename.db". Then you
can access this mapping using "hash:filename" in your Postfix configuration. You may notice that the default alias maps
configuration looks like "alias_maps = hash./etc/aliases" - just as an example. The "hash:"is called the lookup method.

In my setup | replace the text files by MySQL tables. This makes data handling a lot more flexible. But as database tables
usually contain more than just two columns you will need to tell Postfix which column is meant to be the LHS and which
is the RHS. This definition is stored in a text file like this:

user = service

password = DomAKg07
dbname = provider

table = virtual mailboxes
select field = email
where field = mailbox
hosts = localhost

If a file like this would be saved as /etc/postfix/mysql_virtual_mailboxes.cf you could use a mapping of
"virtual_mailbox_maps=mysql:/etc/postfix/mysql_virtual_mailboxes.cf". The LHS of the mapping is defined as 'where_field’
and the RHS is defined as 'select _field". In this example it would be a mapping of the ‘email” column to the ‘mailbox”
column. The other fields in this definition file are user (the username that connects to the DBMS), password (the password
for that user), dbname (the name of the database), table (the name of the table in that database) and hosts (the name of
the server where the DBMS runs).

How virtual domains work

Let me begin with a brief introduction to virtual domains in Postfix 1.x (the newer Postfix 2.x handles them differently)
because misconfiguration will cost you hair and time. There are two types of domains:

e Local Domains

All domains listed as mydestination in your main.cf are treated as /ocal domains. Your default domain
(/etc/defaultdomain) is usually configured as a local domain. Emails for local domains are delivered to system users
(those you configure in /etc/passwd). The mails will be delivered to /var/mail.

e Virtual Domains

Your mail server can receive emails for additional domains called virtual domains. Virtual domains are very flexible.
You do not need system accounts for every mail user (that means users do not need to be configured in the
/etc/passwd). So your system can handle thousands of email users easily. A mapping (see above) is used to save
the information about the users. In my example | use MySQL for that reason.

There is a special kind of virtual domains called virtual mailbox domains. Such a domain lets you receive email for
users of that domain to mailboxes on your hard disk. You can still use the virtual_maps mapping to forward email to
other mailboxes or external email addresses so not every user on that domain must actually have a mailbox but can
also just have the email forwarded somewhere else.

w.lmporta A qomain can either be virtual or local - never both! So if you decide you want your default domain be a
nt] virtual domain then remove it from the mydestination definition. Just leave it blank or set it to
"mydestination=localhost".

Four steps are run when you receive an email for a user in a virtual domain:

1. The virtual_maps mapping is checked for the domain name on the LHS. If it finds such an entry Postfix will know

https://workaround.org/ispmail/woody 3/14

6.10.2015 ISP-style Email Server with Debian "Woody" and Postfix 1.x | workaround.org

that this domain is a virtual domain.

2. The virtual_maps mapping is checked for the email address on the LHS. If it finds such an entry Postfix will redirect
the email to the recipient(s) mentioned on the RHS. (This is done recursively until no more entries exist.)

3. The virtual_mailbox_maps mapping is checked for the domain name on the LHS. If it finds such an entry Postfix will
know that this is a virtual mailbox domain. So the email address belongs to a user having a mailbox on this server.

4. The virtual_mailbox_maps mapping is checked for the email address on the LHS. If it finds such an entry Postfix will
deliver the email to the mailbox file (or maildir) mentioned on the RHS. (If the RHS ends in /' a maildir structure will
be used. Otherwise the destination is just a mailbox file.)

| recommend you also betimes read the original documentation about virtual domains in the VIRTUAL_README that
shipped with the postfix-doc package and is found in /usr/share/doc/postfix/VIRTUAL_README.gz.

Step 1: Install the needed Debian packages

Packages you will absolutely need:

e postfix (initial configuration: "Internet site")
e postfix-mysq|

e postfix-doc

e mysqgl-client

If you intend to run the MySQL server on the same machine:
e mysqgl-server
If you want to offer mail access using POP3/IMAP you need:

e courier-authdaemon

e courier-authmysq|

e courier-maildrop

e courier-pop (for unencrypted POP3 access)

e courier-pop-ssl (for SSL-encrypted POP3 access)
e courier-imap (for unencrypted IMAP access)

e courier-imap-ssl (for SSL-encrypted IMAP access)

If you want to allow road-warriors to send email through your server using authenticated SMTP you also need:
e postfix-tls (for encrypted authenticated SMTP)
¢ libsasl-modules-plain
e sasl-bin
¢ libpam-mysql
e openssl (to create the certificate)
If you want to scan incoming email for viruses and spam:
e [see the section later in this document - you will need backports]
If you want to offer webmail for your users:
e sqwebmail (install as SUID root: yes)
Optional but useful packages:

e phpmyadmin (PHP interface for easy administration of MySQL databases)

Step 2: Create the database

You need to create a database first which holds the tables. If you are experienced in using MySQL you can of course do
this work on the command line. However | would rather use phpmyadmin for MySQL database management. It is up to
you.

Hint: when the mysql-server is first run you can access the database as user 'root’ with no password. You need to create
a new database user for Postfix that has read-only access to just the provider database. If you are stuck here please
read the appropriate documentation at mysql.com.

First create a database. | call it ‘provider' because | intend to do more than just email (which is not within the scope of

https://workaround.org/ispmail/woody 4/14

6.10.2015 ISP-style Email Server with Debian "Woody" and Postfix 1.x | workaround.org

this document at the moment). Either do this in phpmyadmin or run this shell command.:

mysqladmin -u [username] -p -h [hostname] create provider

Step 3: Create the tables

After you have created the database you will need to create the database tables that will contain the control information
for Postfix.

domains
The first table will contain just one boring column containing the virtual domain name. This table will need to have a row
for each virtual domain. Just run this SQL statement to create it:

CREATE TABLE domains (
domain varchar(50) NOT NULL,
PRIMARY KEY (domain),

UNIQUE KEY domain (domain))
TYPE=MyISAM;

forwardings
The table ‘forwardings’ will be used to alias one email address to another. You can use this table for general redirections.
(Hint: this even works for your local domain.) This is the SQL statement to create the table:

CREATE TABLE forwardings (
source varchar(80) NOT NULL,
destination TEXT NOT NULL,
PRIMARY KEY (source))
TYPE=MyISAM;

users

Finally the ‘users’table contains information about your user accounts. Every user has a username and password for
accessing the mailbox by POP3 or IMAP. As users tend to forget things (just look under the keyboard of your boss for his
password) | decided to use the ‘email' address also as a login username. The email address is also be used for the
directory name where emails for this users will be stored on the hard disk. So just these two fields are sufficient here.
Just another SQL query to copy and paste:

CREATE TABLE users (

email varchar(80) NOT NULL,
password varchar(20) NOT NULL,
UNIQUE KEY email (email)

) TYPE=MyISAM;

Step 4: Create the database mapping definitions

As specified earlier in this document you need to tell Postfix where the control information is stored in the database. You
need to create the following three text files in /etc/postfix for that reason.

Postfix runs in a chroot directory (/var/spool/postfix) and cannot access any files outside that directory.
Usually you talk to the MySQL database via its socket file /var/run/mysqld/mysqld.sock. As you can see this
l+_[Importa file is out of reach for Postfix. So you can either try to move the socket file (which may lead to other

nt] problems) or use TCP networking. The latter means you are talking to MySQL through your network stack.
Advantage: you do not need to care about the chroot restrictions. Disadvantage: everybody can talk to your
MySQL server. So you are strongly recommended to take measures to limit access to your database server
(e.g. by using netfilter rules). You have been warned. To enable TCP networking just comment out the line
"skip-networking" from your /etc/mysql/my.cnf file and restart MySQL.

mysgql-virtual_domains.cf

This is a simple mapping of your virtual domain name (LHS) to the string ‘virtual’ (RHS). This mapping is used for the
transport table as it maps each virtual domain to the string ‘virtual' (which tells Postfix that this is a virtual domain). It is
also used for the virtual_maps and virtual_mailbox_maps definition where just the LHS matters.

Create the file and fill the '..." with the information of your database user and database server name. Do not use
"localhost" as the server name because Postfix would try to use the MySQL socket for communication. Instead use the
name or IP address that belongs to your ethernet interface.

user =
password =

dbname = provider

table = domains

select field = 'virtual'

https://workaround.org/ispmail/woody 5/14

6.10.2015 ISP-style Email Server with Debian "Woody" and Postfix 1.x | workaround.org

where field = domain
hosts =

mysgql-virtual_forwardings.cf
This mapping reads the 'forwardings' table to provide a way to redirect email addresses. It simply maps the 'source’
column to the 'destination' column. We will use it for the virtual_maps mapping.

user =

password =

dbname = provider

table = forwardings

select field = destination
where field = source

hosts =

mysql-virtual_mailboxes.cf

The next definition file deals with user mailboxes. It tells Postfix where to store email for a specific email address. We will
use it later in the virtual_mailbox_maps mapping. Postfix will search the ‘mailbox’' column (RHS) for a given ‘email' address
(LHS). | just add a /' to the mailbox field so Postfix will create a maildir structure instead of a mailbox file. This is needed
for the Courier POP3 and IMAP services later.

user =

password =

dbname = provider

table = users

select field = concat(email,'/")
where field = email

hosts =

mysql-virtual_email2email.cf

Another quirk of virtual domains is the precedence of the virtual_maps mapping when using catch-all addresses. ("Catch-
all' means you are using a forwarding like "@domain.com"->"service@domain.com" to catch all email that is sent to any
user name in that domain.) If you would map @domain.com but not the other specific addresses
specific.user@domain.com all email would be delivered to @domain.com even if the email address is listed in
virtual_mailbox_maps.

This is a simple mapping for all email addresses in the users table to themselves to work around the above problem.

user =
password =

dbname = provider
table = users

select field = email
where field = email
hosts =

|« [Importa Make sure nobody but root can read these files. Otherwise everybody on your system could read your
nt] database access password in plain text. Run "chmod o= /etc/postfix/mysql-virtual_*.cf" to steal others the
privileges. You also need to set the group of these files to postfix by running "chgrp postfix
letc/postfix/mysql-virtual_*.cf".

Step 5: Create a vmail user

Your system can hold mailboxes for thousands of users. You probably do not want to assign a unique UID (user ID) to
every user. So | recommend you create a pseudo-user who will become the owner of all mailboxes.

Just enter these lines in a root shell:

groupadd -g 5000 vmail
useradd -g vmail -u 5000 vmail -d /home/vmail -m

Step 6: Edit the main.cf

The /etc/postfix/main.cf is the main configuration file for Postfix. | will describe the basic settings needed for virtual
domains. Do not wipe away your main.cf and paste these lines into it. You will probably want to customise the
configuration in other ways so | cannot be complete here.

myhostname = ... Make sure this is set to your fully qualified domain name.

mydestination = ... List your local domains here seperated by commas. Do not list any virtual domain here.

https://workaround.org/ispmail/woody 6/14

6.10.2015

mynetworks = ...

ISP-style Email Server with Debian "Woody" and Postfix 1.x | workaround.org

List the IP ranges here that are allowed to send email through your mail server. This is
most likely your local network.

transport_maps =
mysql:/etc/postfix/mysql-
virtual_domains.cf

The transport mapping is used to determine how to handle a domain. We are just using the
‘domains' table from the database that maps virtual domain names to the string 'virtual'.
This is needed to tell Postfix this is a virtual domain.

virtual_maps =
mysql:/etc/postfix/mysql-
virtual_forwardings.cf
mysql:/etc/postfix/mysql-
virtual_email2email.cf

This is a general purpose redirection table. You can redirect one email address to another
or even catch all mail for a domain and redirect it to one specific email address. The
information is stored in the forwardings’ table. Every LHS email address is rewritten to the
addresses on the RHS. If you have multiple destination addresses you can comma-seperate
them in one entry. (Hint: the virtual domains must not be listed here or they would become
virtual alias domains: This kind of virtual domains is just used for aliasing - you cannot
receive email for such domains in a mailbox.) | also use the mysql-virtual_email2email.cf
mapping to point the email to itself. That may sound stupid but is badly needed if you use
catchall addresses. See the mysql-virtual_email2email mapping.

virtual_mailbox_maps =
mysql:/etc/postfix/mysql-
virtual_domains.cf
mysql:/etc/postfix/mysql-
virtual_mailboxes.cf

Another important mapping is the virtual mailbox maps. First it is a list of virtual mailbox
domains (that is a domain that has user mailboxes on this server). Second it maps email
addresses (LHS) to the location of the mailbox on your hard disk (RHS) relative to the
virtual_mailbox_base.

virtual_mailbox_base =
/home/vmail

This is the base path where the mailboxes of the users will be stored on your hard disk
(see above).

virtual_uid_maps
static:5000

You should tell Postfix who shall be the owner of the mailboxes. This is the UID (user ID) of
the owner (taken from /etc/passwd). Set it to the UID of the "vmail” user you just created.

virtual_gid_maps =
static:5000

The same for the GID (group ID).

smtpd_sasl_auth_enable =

yes

Enable the authenticated SMTP feature.

broken_sasl_auth_clients =
yes

Some broken mail clients like Microsoft Outlook use a deprecated way to detect if a mail
server speaks authenticated SMTP. Make them happy.

smtpd_recipient_restrictions
= permit_mynetworks,
permit_sasl_authenticated,
check_relay_domains

These restrictions are checked whenever a new email arrives at your mail server to check
who is allowed to relay email. permit_mynetworks will allow everybody you configured in
mynetworks. permit_sasl_authenticated will allow everybody from everywhere as long as
they use authenticated SMTP. And finally relaying is allowed if the user wants to send email
to one of the domains listed in relay_domains or to local domains.

smtpd_use_tls = yes

Encrypt the authenticated SMTP session using SSL

smtpd_tls_cert_file =
/etc/postfix/smtpd.cert

The location of the SSL certificate for TLS (we will create it later)

smtpd_tls_key_file =
/etc/postfix/smtpd.key

The location of the SSL private key for TLS

A quick test

Run postfix reload and postfix check. If you do not get any warnings this part is complete.

Step 7: Make Postfix understand authenticated SMTP (Auth-SMTP)

Imagine your users fetch their email using POP3. Now they need a way to send mails back through your mail server. For
security reasons Postfix allows users defined in mynetworks to send emails. Usually your mail server will only accept
mails for its own domains. If you allowed everybody to send email to every other domain you would provide a so called
open relay that spammers abuse to send out their digital trash. So the logical way is to make remote users trusted by
letting them provide their username and password. If the credentials are correct the user will be trusted like he has an IP
in mynetworks. Most email cilents have this feature included.

Setting up authenticated SMTP is quite easy. The only pitfall is that Debian runs Postfix in a chroot'ed environment in

/var/spool/postfix by default.

Tell Postfix to use PAM

Postfix cannot directly access MySQL tables in version 1.x. So using MySQL tables for SMTP authentication means using
PAM (pluggable authentication modules). PAM is used for about everything that needs authentication - even loggin into
your system from the console. The second step is to make SASL use PAM for authentication. This is easy. Create a
directory /etc/postfix/sasl and set the password check method to PAM:

mkdir /etc/postfix/sasl

https://workaround.org/ispmail/woody

7/14

https://workaround.org/ispmail

6.10.2015 ISP-style Email Server with Debian "Woody" and Postfix 1.x | workaround.org

echo "pwcheck method: pam" > /etc/postfix/sasl/smtpd.conf

We also need to copy the /lib/security/pam_mysql.so to /var/spool/postfix/lib/security to make it accessible for Postfix
(chroot'ed, remember?):

mkdir /var/spool/postfix/lib/security
cp /lib/security/pam mysql.so /var/spool/postfix/lib/security/

Tell PAM to use MySQL
All authentication configurations are stored in /etc/pam.d. As Postfix runs chroot'ed the configuration is searched for in
/var/spool/postfix/etc/pam.d. You need to create that directory first. Then go there and put the following lines into a file

called smtp:

auth required pam mysql.so user=... passwd=... host=... db=provider table=users usercolumn=email passwdco
lumn=password

account sufficient pam mysql.so user=... passwd=... host=... db=provider table=users usercolumn=email pas

swdcolumn=password

le.[Importa Make sure the PAM file is not readable for the whole wide world: chmod o=

n] Ivar/spool/postfix/etc/pam.d/smtp. At the same time it must be readable for Postfix. So you should run
chown root:postfix /var/spool/postfix/etc/pam.d/smtp.
le.[Importa
nt] Woody's pam_mysql.so can only handle passwords up to 16 characters in length. If you used a longer

password the authentication would fail.

Use TLS to encrypt SMTP traffic

An important step is to encrypt the SMTP session. Otherwise the username and password would be transmitted in a very
insecure way. So | encourage you to encrypt that communication using TLS. TLS is short for Transport Layer Security
(RFC2246) and in short terms uses SSL (Secure Socket Layer) which encrypts the mail connection between the road-
warrior and the mail server.

First you will need an SSL certificate. If you don't want to pay for one from your favorite trustcenter you can well use a
self-signed one. (Personal note: | wonder how paying for something makes it more trusted.) The only drawback: the mail
clients does not know about your CA (certificate authority) and will spit out a warning to the user. Either tell the users to
ignore the warning or let them install the certificate on their computers.

For a certificate that is valid for one year for the hostname smtp.domain.tid you would type this:

openssl req -new -outform PEM -out smtpd.cert -newkey rsa:2048 -nodes -keyout smtpd.key -keyform PEM -day
s 365 -x509

You will then be asked a few question about the fields of the certificate. It does not matter what you enter. Just fill the
fields. One exception though - the "Common Name" must be the hostname of your mail server. Example session:

Country Name (2 letter code) [AU]:DE

State or Province Name (full name) [Some-State]:Hamburg

Locality Name (eg, city) []1:Hamburg

Organization Name (eg, company) [Internet Widgits Pty Ltd]:workaround.org email services
Organizational Unit Name (eg, section) []:Master of Disaster

Common Name (eg, YOUR name) []:smtp.domain.tld

Email Address []:postmaster@domain.tld

After a short moment you will get two files: "smtpd.key" (the private key file) and "smtpd.cert" (the certificate). Move these
two files into /etc/postfix.

|+[Importa
nt]

Make sure at least the key file is not readable for the whole wide world: chmod o= /etc/postfix/smtpd.key

A quick test
Run postfix reload to restart Postfix. Run telnet localhost 25 and enter EHLO anywhere.org. You should find a line reading
250-STARTTLS. Bingo - TLS is running.

Step 8: Configure the POP3 / IMAP service

You already set up a large part of the configuration. However your users will still be unhappy as they cannot reach they
mailboxes. So it is time to configure the POP3 or IMAP service. First you need to edit the file /etc/courier/authdaemonrc
and change the directive authmodulelist to “authmysql” like this:

https://workaround.org/ispmail/woody 8/14

6.10.2015 ISP-style Email Server with Debian "Woody" and Postfix 1.x | workaround.org
authmodulelist="authmysql"

Then you need to define the fields of the MySQL database table in /etc/courier/authmysqirc like this:

MYSQL_SERVER

MYSQL USERNAME

MYSQL PASSWORD

MYSQL PORT 0

MYSQL DATABASE provider

MYSQL USER TABLE users

#MYSQL CRYPT PWFIELD (comment this out)
MYSQL_CLEAR PWFIELD password
MYSQL_UID FIELD 5000

MYSQL_GID FIELD 5000

MYSQL LOGIN FIELD email

MYSQL HOME FIELD "/home/vmail"

MYSQL MAILDIR FIELD concat(email,'/")
#MYSQL_NAME_FIELD (comment this out)

Careful - the authmysqgirc is very picky. Make sure you have not used TABs instead of spaces and that there are no
trailing spaces on the lines. Do not forget to restart the authdaemon process using /etc/init.d/courier-authdaemon restart

A quick test
Try to reach the POP3 service by running telnet localhost pop3. You should get a "+OK Hello there.". Voila - your users
should be happy now. :)

|+ [Importa
nt] You cannot fetch emails from a mailbox unless at least one mail has been sent there. Users would get
cryptic error messages. So | recommend sending a welcome email to new users.

Step 9: Test your setup

Congratulations. The configuration part is done. Now comes the more practical part. We will now create the database
entries for your first domain so you can test to receive an email for the virtual domain. Please create these rows in the
appropriate database tables:

domains

domain virtual.test
users

email user@virtual.test
password secret

This means we have one domain called "virtual.test" and one user whose email address (and also the username) is
"user@virtual.test". The password for this user is "secret". As you do not have an MX entry (mail exchanger - part of the
DNS zone) you need to 'deliver' the email manually. Establish an SMTP connection to your mail server (telnet servername
25) and enter the SMTP commands written on the right side:

220 myserver ESMTP Postfix (Debian/GNU)

ehlo workaround.org

250-mailtest
250-PIPELINING
250-SIZE 10240000
250-VRFY

250-ETRN
250-STARTTLS
250-AUTH LOGIN PLAIN
250-AUTH=LOGIN PLAIN
250-XVERP

250 8BITMIME

mail from:<test@workaround.org>

https://workaround.org/ispmail/woody 9/14

6.10.2015 ISP-style Email Server with Debian "Woody" and Postfix 1.x | workaround.org

250 0Ok

rcpt to:<user@virtual.test>

250 Ok

data

354 End data with <CR><LF>.<CR><LF></LF></CR></LF></CR>

This is a test email.

250 Ok: queued as ABC1D1C123

quit

221 BYE

If the server responded like in the example dialog above then the email was at least received. In the log file
/var/log/mail.log you should find a section like this:

Jul 16 20:03:06 myserver postfix/smtpd[2692]: EBC1D1C202: client=mailtest[127.0.0.1]

Jul 16 20:04:04 myserver postfix/cleanup[2697]: EBC1D1C202: message-id=<20040716180306.EBC1D1C202@mailtes
t>

Jul 16 20:04:05 myserver postfix/qmgr[2567]: EBC1D1C202: from=<test@workaround.org>, size=347, nrcpt=1 (q
ueue active)

Jul 16 20:04:05 myserver postfix/virtual[2704]: EBC1D1C202: to=<user@virtual.test>, relay=virtual, delay=
59, status=sent (maildir)

Jul 16 20:04:39 myserver postfix/smtpd[2692]: disconnect from mailtest[127.0.0.1]

If you read "status=sent (maildir)" then the email has been successfully delivered. Run the command find /home/vmail to
see all directories and files there. It should look like this:

/home/vmail/user@virtual.test

/home/vmail/user@virtual.test/tmp

/home/vmail/user@virtual.test/cur

/home/vmail/user@virtual.test/new
/home/vmail/user@virtual.test/new/1090001045.2704 0.myserver.workaround.org

Everyting worked like | described? Great. Then as a last test you may try to fetch the email from your mail client via
POP3 or IMAP (depending on what service you installed). The username for fetching email is always the email address
("user@virtual.test") and the password is "secret" in this test case.

Step 10: Populate your database

Now that the first test has succeeded you will want to configure the datase for your own domains and users. Let me
explain what you need to insert into the database:

For every new domain...
Insert the domain into the ‘domains’ table.

For every new user...
Insert a new row into the 'users’ table containing the email address and the password (in plain text).

For every new forwarding...

Insert a new row into the ‘forwardings’ table containing the source (the address you send mail to) and destination email
address (the address the mail gets forwarded to). If you have multiple destinations (like a poor-man's mailing list) you may
list all email addresses in one row just seperated by commas. Hint: this table is used on every email that passes your
system. So you can even redirect local mail addresses.

Examples:

https://workaround.org/ispmail/woody 10/14

6.10.2015 ISP-style Email Server with Debian "Woody" and Postfix 1.x | workaround.org

postmaster@my.domain philip@my.domain Redirect emails for postmaster to philip.

Forward all email to email addresses in the domain
my.domain to john. This does not apply to users in the
@my.domain john@my.domain ‘email” table though (like tina@my.domain). So more
specific users of a domain always have a higher
precedence than these so called "catch-all" accounts.

This is a whole domain redirection. Every email address
in the my.domain domain will be directed to the same

my.domain another.domain . - . .
@my @ user at another.domain. So julie@my.domain will be
redirected to julie@another.domain.
Forward email that is sent to jesper@my.domain to the
jesper@my.domain dilbert@my.domain,dilbert@gmail.com two email addresses listed on the right side. Both users

get a copy.

Scanning incoming email for viruses (optional)

Introduction to AMaViS

The two most annoying things when using email are spam and viruses. Fortunately you can fight both using a software
called AMaViS (A Mail Virus Scanner). AMaViS is an interface between Postfix, spamassassin (famous for its bayesian
spam filtering capabilities) and any virus scanner (like ClamAV which is freely available). Do not get confused: AMaViS
contains the spam filtering part but has no virus scanner built in. | suggest you install ClamAV, too. It is a free virus
scanner that gets updated frequently.

AMaViS has a huge advantage over even most of the commercial solutions. It is called while someone is sending you an
email - not just after the delivery is done. If a virus is found or the spam probability is high enough then the email will be
rejected while you have the sending system still on the hook. You have probably noticed that most spam and virus emails
are sent with faked sender addresses. So instead of first receiving the email and then bothering the wrong sender you
stop unwanted mails on the door step.

Install the backports for amavis-new and clamav

Woody ships with a very outdated version of AMaViS that | discourage to use. Instead you should get the backport of
amavis-new. Using a backport means installing a special software package that is designed for Woody but contains a
newer version of the software. If you are running Debian on the i386 platform then you can use the backports from
backports.org (http://backports.org/) just first need to add this line to your /etc/apt/sources.list.

deb http://www.backports.org/debian/ woody amavisd-new clamav

This enables you to install these two packages from the backports web site. Then run apt-get update and apt-get install
amavisd-new clamav clamav-daemon zoo bzip2 unrar spamassassin. (Hint: "unrar" and "zoo" can only be installed if you
have "non-free" in your sources.list.) The software packages should be installed now.

(Info: If you completely dislike backports you may instead use the "postfix-amavis" package.)

Configure AMaVIS
Please take a look at the /etc/amavis/amavisd.conf file. These settings need to be taken care of:

$mydomain = Configure this string to your default domain. You will find a reference to $mydomain quite
'yourdomain.org’; often in the configuration file. So you know where you find it.

@bypass_virus_checks_acl If this line is commented out (has a '#' at the beginning of the line) then virus checks are
=qw(.); enabled.

@bypass_spam_checks_acl If this line is commented out (has a '#' at the beginning of the line) then spam checks are
=qw(.); enabled.

This is a list of all domains that you are hosting. When an email passes your mail server
this setting is used to determine if the mail is outgoing or incoming. Outgoing mail will not
be scanned.

@local_domains_acl = (
"$mydomain");

$final_virus_destiny =

The default is to just throw away infected mails. | tend to reject them.
D_REJECT;

This defines how to handle emails with banned attachment types. Many MIME types like
PIF, EXE, COM or DOC files are infected. You may choose later which types you do not
like.

$final_banned_destiny =
D_REJECT:

https://workaround.org/ispmail/woody 11/14

http://backports.org/

6.10.2015 ISP-style Email Server with Debian "Woody" and Postfix 1.x | workaround.org

This defines what to do with emails that are classified as spam. You may wonder why |
$final_spam_destiny = suggest you let these emails pass. My users would get upset if | just threw away emails
D PASS; that a machine has found to be spam. In any case a line "X-Spam-Status” is added to the
B mail header. So users can configure they email clients to handle mails differently depending
on the spam status.

AMaViS rates every mail with a "spam score". Usually spam has levels of 5-10. You will get
"X-Spam-Status"” header lines added to the email if the spam score is above this value. |
set it to -1000 because | want all mail to get the header lines.

$sa_tag_level_deflt =
-1000;

If the spam score is higher than this value then the mail will be flagged as spam. This is

sa_tag2_level deflt = 5.0; . .
$sa_tag2_ - done by adding a header line "X-Spam-Status: Yes"

If the spam score is higher than this value AMaViS start to take action on the mail. The

kill_level_deflt = 10; .) . .
$sa_kill_level_de action is defined by $final_spam_destiny.

$sa_spam_subject_tag = If you like to have the email subject altered to make spam mails more visible then you can
R SPAM**E ! have it rewritten. This string will be added if spam is detected.

This is a section where you can configure one or more virus scanner. Many common
scanners are already preconfigured and just need to have the comment sign (‘#') removed
from the lines. You are also free to add your own command-line virus scanner here. For the

@av_scanners = (... beginning | suggest you just enable ClamAV and comment out all other entries. You may
wonder why clamav is mentioned twice. Well, the @av_scanners' entry is about the
daemonized version (clamd) and the @av_scanners_backup's entry runs the command-line
version (clamscan).

Do not forget to restart the amavis service after you have changed the configuration file.

Tell Postfix to use AMaViS
Now that the amavis daemon is hopefully running in the background you still nedd to tell Postfix that you want to have all
your emails scanned. Edit the /etc/postfix/main.cf and add the following line:

content filter = amavis:[127.0.0.1]:10024

Now you have all emails run through the "amavis:" service that is listening on port 10024 on your system. You also need
to add the amavis filter to Postfix's configuration. Add these two sections to the /etc/postfix/master.cf.

amavis unix - - n - 2 smtp
-0 smtp data done timeout=1200
-0 disable dns lookups=yes

127.0.0.1:10025 inet n - n - - smtpd
-0 content filter=

-0 local recipient maps=

-0 relay recipient maps=

-0 smtpd restriction classes=

-0 smtpd _client restrictions=

-0 smtpd helo restrictions=

-0 smtpd sender restrictions=

-0 smtpd recipient restrictions=permit mynetworks,reject
-0 mynetworks=127.0.0.0/8

-0 strict rfc821 envelopes=yes

Due to quirks (http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=255733) in the file permissions you also need to add the user
"clamav" to the group "amavis":

adduser clamav amavis
/etc/init.d/clamav-daemon restart

Finally run a postfix reload and postfix check to make sure you have still no errors in your Postfix configuration. All
incoming emails should now be tested for viruses and spam. Look at your /var/log/mail.log file for details. A great service
for checking AMaViS is testvirus.org (http:/testvirus.org/) . They are sending you harmless test mails with the EICAR virus
test signature.

How does it work actually?

A last word to explain how Amavis works. Postfix receives your mail and pipes the email as defined in your "amavis" filter.
AMaViS will then use the configured virus scanner to scan all attachments. If the attachments are archives it will even use
the archive tools to unpack them. After scanning the files it will contact Postfix on localhost's port 10025 and re-inject the
email into the delivery process. But this time it sets the "content_filter" option to nothing thus bypasses further content
scanning. You will also see this behaviour in your /var/log/mail.log file. First you will see a "relay=amavis" and then a
"relay=virtual". If everything worked you will see a line like this in the /var/log/mail.log:

https://workaround.org/ispmail/woody 12/14

http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=255733
http://testvirus.org/

6.10.2015 ISP-style Email Server with Debian "Woody" and Postfix 1.x | workaround.org

amavis[677]: (00677-02) Passed, <my@test.address> -> <user@virtual.test>, Message-ID: <20040716231708.871
7C1C21E@myserver>, Hits: -

Offering webmail access (optional)

Now that you know how your users can get and send their emails via POP3, IMAP and SMTP you may wonder if there is
a comfy way to give your users access to their mailbox using webmail. Luckily this is easy. The package you need is
called "sqwebmail" - a web mail system that uses the Courier services and can be told (via PAMs) to use any
authentication scheme. Install it using apt-get install sqwebmail. You will be asked if you want to run the "webmail" binary
chroot. Yes you do! Nothing else needs to be done. The authentication will be done by the courier-authdaemon that you
have already set up.

Now access your web server like http://hostname/cgi-bin/sqwebmail and you should get a login dialog. As usual use the
email address as the username and the appropriate password from the ‘users’ table.

Troubleshooting

Error messages

Postfix knows that my.testdomain is a virtual
domain. But the user account
"user2@my.testdomain" was not found in the 'users'
table.

...to=<user2@my.testdomain>, relay=none,
/var/log/mail.log delay=0, status=bounced (unknown user:
"user2@my.testdomain")

...to=<foobar@Iocal.test>, relay=none, delay=0,
/var/log/mail.log status=bounced (Name service error for
domain.com: Host not found)

Postfix could not find an MX entry for the domain
"domain.com".

Postfix tried to read from the MySQL database using
the user service@myserver. However the
combination of username and password have been
rejected by MySQL.

...warning: connect to mysql server mailtest:
/var/log/mail.log Access denied for user: 'service@myserver'
(Using password: YES)

amavis[677]: (00677-01) Clam Antivirus-clamd

FAILED - unknown status: /var/lib/amavis/amavis-
/var/log/mail.lo You probably did not run adduser clamav amavis.
v gimailog 20040717T011641-00677/parts: Can't access the up yd !

file ERROR\n

A file in the chroot jail in /var/spool/postfix/etc differs
from the files in /etc. Just restart the postfix service
and these files will be copied into the jail.

Output from postfix/postfix-script: warning:
postfix check /var/spool/postfix/etc/hosts and /etc/hosts differ

MySQL debugging
In some cases it may happen that Postfix cannot even read from the MySQL database. If you suspect this you may want
to take a look at the /var/log/mysql.log file. It contains all SQL queries to the database.

Online troubleshooting

A lot of smart users can be found on the IRC channel #postfix in the freenode.net network. You are invited to join us. |
usually attend there as "ChrisH". Please do not message me privately. Just join the channel and ask your question as
precisely as possible. And though | am flattered that so many people use my tutorial | cannot guarantee any reaction
times if you send me an email.

Thanks

A lot of people have mailed me for suggestions. | would like to thank the following people for providing valuable additions
to this tutorial.

e Alexander Stielau
e Christian Garling
e Christian Kurz

e Christof Gruber

* Daniel Hackenberg
e Eicke Kemm

e Jesper Krogh

¢ Kay-Michael Voit
e Mario Duve

e Tim Weippert

e Ricardo Arguello
e Milbert Vanilbert

https://workaround.org/ispmail/woody

13/14

6.10.2015 ISP-style Email Server with Debian "Woody" and Postfix 1.x | workaround.org

And of course thanks to my wife who showed a lot of patience with me.

28603 reads

ADVERTISEMENT

Ads disabled for Christoph Haas
Block: Google Ads 728x90
Ads

About the author

| am a system administrator and programmer. In my nerdy spare time | work on web applications, Python and
Ruby programs, write articles or learn new technology. On workaround.org you can find problems, solutions and
hints on my findings and get help. Of course your feedback is as welcome as any donation. :) <Christoph Haas>

The contents of this web site are Copyright © 2000-2015 Christoph Haas - Impressum/Imprints

https://workaround.org/ispmail/woody 14/14

https://workaround.org/impressum

